Indian Statistical Institute, BangaloreB.Math (Hons.) II Year, First SemesterSemestral ExaminationAnalysis IIITime: 3 hours2 Dec 2011Instructor: Pl. MuthuramalingamMaximum marks: 50

Note: The paper has two part, Part A and Part B. You can get a maximum of 45 (forty five only) in part A.

Part A

- 1. State and prove Stokes Theorem. [7]
- 2. Give an example of a continuous function $f : (0,1) \times (0,1) \rightarrow R$ such that $\int_{0}^{1} dy f(x,y)$, $\int_{0}^{1} dx \int_{0}^{1} dy f(x,y)$, $\int_{0}^{1} dx f(x,y)$, $\int_{0}^{1} dy \int_{0}^{1} dx f(x,y)$ all exist, $\int_{0}^{1} dy \int_{0}^{1} dx f(x,y) \neq \int_{0}^{1} dx \int_{0}^{1} dy f(x,y)$ and prove your claim. [3]
- 3. Let $g: [-1,1] \to R$ be any continuous even function i e g(t) = g(-t)for all t in [-1,1]. Let $\mathbb{E} = lin$. span $\{1, t^2, t^4, \cdots, t^{2k}, \cdots\}$. Show that for each $\delta > 0$ there exists p_{δ} in \mathbb{E} such that $\sup_{-1 \le t \le 1} |g(t) - p_{\delta}(t)| \le \delta$.
 - [3]
- 4. Let $h \varepsilon C[a, b]$ be differentiable and $h' \varepsilon C[a, b]$. Show that there exists a sequence $P_1, P_2, \dots, P_n, \dots$ of polynomials such that

$$0 = \lim_{n \to \infty} \sup_{a \le t \le b} \left[|P_n(t) - h(t)| + |P'_n(t) - h'(t)| \right]$$
[4]

- 5. Let $f_1, f_2, \dots \in C[a, b], f_n$ is differentiable and $f'_n \in C[a, b]$. Let $g, h \in C[a, b]$ be such that $f_n \to g$ and $f'_n \to h$ uniformly on [a, b]. Then show that g is differentiable. [4]
- 6. Let $B_n(r) = \{(x_1, x_2, \cdots, x_n) : x_1^2 + x_2^2 + \cdots + x_n^2 \le r^2\}.$ Let $v_n(r) = \int_{B_n(r)} dx_1 dx_2 \cdots dx_n.$
 - (a) Find a relation between $v_n(r)$ and $v_n(1)$.
 - (b) For $k \ge 3$ find a relation between $v_k(1)$ and $v_{k-2}(1)$. [4]

7. Let $f_k: (0,\infty) \times R \times R \to R$ be given by

$$f_k(t, x, y) = e^{-tk^{\cdot 001}} \sin(k^{\cdot 002}x) \cos(k^{\cdot 003}y)$$

Define $f: (0,\infty) \times R \times R \to R$ by $f(t,x,y) = \sum_{k=1}^{\infty} f_k(t,x,y).$

- (a) Show that RHS is summable.
- (b) Show that f is a continuous function. [4]
- 8. Let $\mathbf{F}(x, y, z) = (x^2, -2xy, 3xz),$ $V = \{(x, y, z) : x \ge 0, y \ge 0, z \ge 0, x^2 + y^2 + z^2 \le 4\}.$ Evaluate $\int \int \int div \mathbf{F}$. [3]
- 9. Let **F** be as in question 8. Let $S = \{(x, y, z) : z \ge 0, y \ge 0, z \ge 0\}$ $0, x^2 + y^2 + z^2 = 4\}.$ Find $\int \mathbf{F}$. Note that S is a portion of the boundary ∂V of V of question 8. [7]

10. Verify Stokes theorem for $\int_{\Gamma} z dx - x dz$

where

$$\begin{bmatrix} = \text{ boundary of } S, \\ S = \{(x, y, z) : x^2 + y^2 + z^2 = 4a^2, \\ x^2 + y^2 \le 2ax, \\ x > 0, y > 0, z > 0 \}$$

where $a > 0.$ [10]

where a > 0.

11. Let a > 0, b > 0, k > 0, h real and $ab - h^2 > 0$. It is known that $\{(x,y) : ax^2 + 2hxy + by^2 \le k\}$ is an elliptic disk. Find its area in terms of $k, ab - h^2$. [4]

Part B

12. Let $g_o: [-1,1] \to R$ be the continuous function given by $g_o(t) = |t|$. Let Q_1, Q_2, \cdots be any sequence of polynomials converging uniformly to g_0 on [-1,1]. Fix $\delta > 0$. For each $k = 1, 2, 3, \cdots$ define $b_k = \sup \sup |$ $n,j \ge k |t| \le \delta$ $Q'_n(t) - Q'_j(t)$ | show that $\liminf_k b_k > 0$ [Here δ is fixed]. $\left[5\right]$